LncRNA MEG3 Regulates Imatinib Resistance in Chronic Myeloid Leukemia via Suppressing MicroRNA-21
نویسندگان
چکیده
Imatinib resistance has become a major clinical problem for chronic myeloid leukemia. The aim of the present study was to investigate the involvement of MEG3, a lncRNA, in imatinib resistance and demonstrate its underlying mechanisms. RNAs were extracted from CML patients' peripheral blood cells and human leukemic K562 cells, and the expression of MEG3 was measured by RT-qPCR. Cell proliferation and cell apoptosis were evaluated. Western blotting was used to measure the protein expression of several multidrug resistant transporters. Luciferase reporter assay was performed to determine the binding between MEG3 and miR-21. Our results showed that MEG3 was significantly decreased in imatinib-resistant CML patients and imatinib-resistant K562 cells. Overexpression of MEG3 in imatinib-resistant K562 cells markedly decreased cell proliferation, increased cell apoptosis, reversed imatinib resistance, and reduced the expression of MRP1, MDR1, and ABCG2. Interestingly, MEG3 binds to miR-21. MEG3 and miR-21 were negatively correlated in CML patients. In addition, miR-21 mimics reversed the phenotype of MEG3-overexpression in imatinib-resistant K562 cells. Taken together, MEG3 is involved in imatinib resistance in CML and possibly contributes to imatinib resistance through regulating miR-21, and subsequent cell proliferation, apoptosis and expression of multidrug resistant transporters.
منابع مشابه
Analysis of Expression Of SIRT1 Gene In Patients With Chronic Myeloid Leukemia Resistant To Imatinib Mesylate
Background: Chronic myeloid leukemia is a clonal myeloproliferative disease which is characterized by bcr/abl translocation. With the emergence of tyrosine kinase inhibitors such as imatinib mesylate, significant improvement has been made in treatment of this disease. However, drug resistance against this medicine is still an obstacle. SIRT1 is a gene with deacetylase activity which has been de...
متن کاملLncRNA MEG3 enhances cisplatin sensitivity in non-small cell lung cancer by regulating miR-21-5p/SOX7 axis
Background Long noncoding RNAs (lncRNAs) have been revealed to play essential role in drug resistance of multiple cancers. LncRNA MEG3 was previously reported to be associated with cisplatin (DDP) resistance in non-small cell lung cancer (NSCLC) cells. However, the molecular mechanism of MEG3 affecting DDP resistance in NSCLC remains to be further illustrated. In this study, we attempted to dis...
متن کاملMicroRNA-212/ABCG2-axis contributes to development of imatinib-resistance in leukemic cells
BCR-ABL-independent resistance against tyrosine kinase inhibitor is an emerging problem in therapy of chronic myeloid leukemia. Such drug resistance can be linked to dysregulation of ATP-binding cassette (ABC)-transporters leading to increased tyrosine kinase inhibitor efflux, potentially caused by changes in microRNA expression or DNA-methylation. In an in vitro-imatinib-resistance model using...
متن کاملImpact of ABCB1 Gene Polymorphisms and Smoking on the Susceptibility Risk of Chronic Myeloid Leukemia and Cytogenetic Response
Background: Imatinib mesylate (IM), a strong and selective tyrosine kinase inhibitor, has been approved as the front line of treatment in chronic myeloid leukemia (CML) patients. In spite of satisfactory results of imatinib in the treatment of patients with CML, patients with treatment failure or suboptimal response developed resistance that might be because of pharmacogenetic variants. This st...
متن کاملEvaluation of Thyroid Dysfunction during Imatinib Therapy in Chronic Myeloid Leukemia
Background: Imatinib mesylate is the first generation of Tyrosine kinase inhibitors (TKI) and highly effective in the treatment of chronic myeloid leukemia (CML). We aimed to evaluate thyroid function at baseline and at 1, 3, 6 and 12 months after initiation of Imatinib mesylate therapy in 20 newly diagnosed BCR-ABL positive CML patients. Methods: This study was done during 2013-2014, 20 new c...
متن کامل